
1

PhysicallyPhysically--Based Reflectance Based Reflectance 
for Gamesfor Games

9:15 9:15 -- 10:15: Game Development10:15: Game Development

Dan Baker & Naty HoffmanDan Baker & Naty Hoffman



2

Game DevelopmentGame Development

• Game Platforms (Dan)

• Computation and Storage Constraints (Dan)

• Production Considerations (Naty)

• The Game Rendering Environment (Naty)

In this part of the course, we will first discuss current and next-generation platforms 
on which games run. Next we will discuss the computation and storage constraints 
game developers face when developing for these platforms, the various production 
considerations which affect reflectance rendering in games, and finally the rendering 
environment within which reflection models are used in games.



3

Game PlatformsGame Platforms

In this section, we discuss the platforms on which games run. First we shall give a 
brief overview of the rendering pipeline on the relevant platforms, and then we shall 
detail some of the characteristics of current and next-generation game platforms.

Here we see three modern game platforms. Two are consoles (the Xbox 360 and 
Playstation 3) and the third is a PC.



4

Modern Game HardwareModern Game Hardware

• Hardware is different, but trends are similar
– Multiple CPUs

– Custom GPU, but all similar

– Programmable Shading

– Bandwidth is getting pricier

– Computation is getting cheaper 

To some extent, the various game platforms are converging. They all use multiple-
core central processing units and  GPUs with similar architectures.



5

Basic Hardware ArchitectureBasic Hardware Architecture

CPU GPU

MemoryMemory

Basic block diagram of the hardware architecture of  modern game platform. On 
some systems, like Xbox 360, the GPU and CPU memory is merged.



6

ShaderShader Model 3 (Xbox360/PS3/D3D9)Model 3 (Xbox360/PS3/D3D9)

Vertex
Buffer

Vertex
Setup

Vertex
Shader

Setup
Rasterizer BlendPixel

Shader

Index
Buffer Texture Render

Target
Depth
StencilTexture

Memory

storage programmable logic fixed logic

Filtering Filtering

Constants Constants

This represents the main functional units in the GPU pipeline as it exists today. The 
Xbox 360, the Playstation 3 and current PCs all share this GPU architecture. For 
the purposes of this talk, we are most interested in the two programmable shader
units. Currently there is a programmable vertex shader or vertex program, and a 
programmable pixel shader or fragment program. The rest of the pipeline is fixed-
function (but highly configurable) logic.



7

ShaderShader Model 4 (D3D 10)Model 4 (D3D 10)

Input
Assembler

Vertex
Shader

Setup
Rasterizer

Output
Merger

Pixel
Shader

Geometry
Shader

Texture Render
Target

Depth
Stencil

Stream
Buffer

Stream out

Memory

Memory

storage programmable logic fixed logic

Filtering Filtering Filtering

Constants Constants Constants

Vertex
Buffer

Index
Buffer Texture Texture

This shader model is the one exposed in Direct3D 10. Hardware supporting this 
model should be available in late 2006. Most of the differences from shader model 3 
are related to memory access, however the introduction of the Geometry Shader
fundamentally alters the kinds of shading which can be performed, since shading is 
now possible at the triangle level if desired.



8

Game DevelopmentGame Development

• Game Platforms (Dan)

• Computation and Storage Constraints (Dan)

• Production Considerations (Naty)

• The Game Rendering Environment (Naty)

Now we shall discuss the computation and storage constraints game developers 
face when developing for these platforms, in particular as they pertain to rendering 
reflection models.



9

Computation and Storage Computation and Storage 
ConstraintsConstraints

6 GB/s

60 GB/s

25 GB/s

25 GB/s

21.2 GB/s 
(256 GB/s)

Bandwidth
2048 MB512 MB512 MBMemory
shader 4shader 3shader 3GPU

3 GHz

2 Cores

3.2 GHz

1 Core + 7 SPUs

3.2 GHz

3 Cores

CPU

PC (2007)Playstation 3Xbox 360Platform

The PS3 and PC both have two memory buses, a graphics bus and a CPU bus. For 
this reason two bandwidth numbers are given; the first number is for the CPU bus, 
and the second is for the GPU bus. The Xbox 360 has one bus, and high-speed 
embedded RAM for the back-buffer (for which the bandwidth number is given in 
parenthesis).
Some of these computational resources are reserved for operating system tasks 
(some SPUs on the PS3, one thread of one core on the Xbox 360, and a variable 
amount on the PC).



10

CPU DifferencesCPU Differences

• Total CPU power similar, but PC’s take 
~30% hit due to OS

• CPU and system memory are shared by ALL 
other game systems, physics, AI, sound, etc. 

• Typically end up with far less then 50% of 
CPU for Graphics

Cache behavior is also a big problem with multiple CPUs and other tasks. 
Specifically, other processes and jobs can pollute the working set, vastly slowing 
down a processors performance. Latency varies from platform to platform, but is on 
the order of 100-500 cycles.



11

Polygon / Topology ShadingPolygon / Topology Shading

• In offline rendering, shading is typically performed 
on polygons (micropolygons)

• GPUs currently perform shading on individual 
vertices, and then pixel fragments 
– Polygon or topology computations done on the CPU

• Shader model 4 adds geometry shaders on GPU

• On PS3, these computations can be done on SPUs

• Performance characteristics are still unclear

The shader model exposed on current GPUs allows for stream computation on 
individual vertices or fragments only, so any computations which are performed on 
triangles or otherwise require topology or connectivity information must be restricted 
to fixed-function hardware, or performed on the general-purpose CPU. In the near 
future, GPUs supporting shader model 4 will have the geometry shader which 
enables programmable triangle / topology computations. On the Playstation 3, the 
SPUs can fulfill a similar role.



12

Vertex ProcessingVertex Processing

• Most games are not vertex bound

• Much more likely to be memory bound

• In some situations, performance can be 
gained by moving operations from pixel to 
vertex shader

• However, the trend is to move shading 
operations to the pixel shader

It would seem that moving computations to the vertex level would always result in a 
performance gain. However, some scenes have extremely small triangles (so the 
balance between vertex and fragment count is not always overwhelmingly one-
sided). Also, the GPU contains hierarchical z-buffer hardware which enables 
discarding many pixels before shading. When properly utilized, this can lead to the 
vertex processing becoming the bottleneck. Shading at a vertex level can also 
cause visual artifacts. For these reasons, in the future it is likely that the vertex 
shaders will primarily perform geometry transformations and deformations and the 
shading will be mostly relegated to the pixel shader.



13

Pixel PushingPixel Pushing

• ~500 instruction pixel shaders are here! 
– Well, almost…

• Instructions ~1 cycle, usually 4 way SIMD
– 500 cycles per pixel at 800x600, 60fps = 14.4  

billion pixel cycles / sec

• 500 MHz GPU with 32 shader cores

• Predicated on ability to do Z-Prepass
– Not valid for translucent materials

500 instructions is high end, but recall that with flow control, in a typical scenario not 
all of these instructions are executed. Still, 500 cycles is theoretically feasible on 
high end hardware, assuming the hardware is running at full capacity. In practice 
the number will often be significantly lower.

The Z-prepass referred to in the slide is the technique of rendering the scene to the 
z-buffer first with a very simple shader (writing no color, just depth), thus taking full 
advantage of the hierarchical z-buffer hardware when the full shader is being used. 
This technique only works on opaque surfaces. Translucent surfaces often have 
high overdraw and for this reason they must use simpler shaders.



14

ButBut……

• Computation follows Moore’s law, but 
memory does not

• Texture loads expensive – bandwidth is high

• Pixel shaders must execute together for 
gradients – so a cluster of pixels pays the 
price of the most expensive one

• Latency hiding mechanism isn’t free

Memory throughput and latency improves very slowly while computation throughput 
increases at an accelerating rate. For this reason, there is an ever-growing gap in 
the relative cost between the two.



15

ShaderShader ExecutionExecution

Math
Math
Tex
Math
Math

4

Shader Core Suspended Pixels

Math
Math
Tex
Math
Math

2

Math
Math
Tex
Math
Math

3

Math
Math
Tex
Math
Math

1

In this theoretical GPU, we have one shader core and 3 suspended pixels. The 
shader core starts by executing shader instance #1, which corresponds to a specific 
pixel on the screen.



16

ShaderShader ExecutionExecution

Math
Math
Tex
Math
Math

4

Shader Core Suspended Pixels

Math
Math
Tex
Math
Math

2

Math
Math
Tex
Math
Math

3

Math
Math
Tex
Math
Math

1

When the GPU hits the Texture instruction, it halts the pixel thread, and puts it in 
the suspended pixels. The program counter and register state is halted at that 
texture instruction. Shader instance 2 is now loaded into the core.



17

ShaderShader ExecutionExecution

Math
Math
Tex
Math
Math

4

Shader Core Suspended Pixels

Math
Math
Tex
Math
Math

2

Math
Math
Tex
Math
Math

3

Math
Math
Tex
Math
Math

1

Now, shader instance 3 is loaded into the shader core, and executed until the 
texture instruction.



18

ShaderShader ExecutionExecution

Math
Math
Tex
Math
Math

4

Shader Core Suspended Pixels

Math
Math
Tex
Math
Math

2

Math
Math
Tex
Math
Math

3

Math
Math
Tex
Math
Math

1

Finally, the shader core gets to pixel instance #4, here we have 3 partially executed 
pixels waiting to be completed.



19

ShaderShader ExecutionExecution

Math
Math
Tex
Math
Math

4

Shader Core Suspended Pixels

Math
Math
Tex
Math
Math

2

Math
Math
Tex
Math
Math

3

Math
Math
Tex
Math
Math

1

Finally, the shader core reloads pixel #1, and the texture load data should now be 
ready, having been sent across the bus



20

Textures and DataTextures and Data

• Artists like to make very high resolution 
textures filled with parameters for each texel

• Texture costs often worse than computation

• A character model might have four 
2048x2048 textures - 64 MB of RAM! 

• Could only have 6 characters at this rate! 

Storage constraints are often more important in Console development then in PC 
development, since there is often no guarantee of a hard drive, RAM is limited, and 
seek time on a DVD/Blu-Ray disc is slow.  Additionally, high texture use causes 
bandwidth loads which can be a performance bottleneck.



21

Typical Texture Memory BudgetsTypical Texture Memory Budgets

• Last generation, typical character ~1-4 MB
• This generation action game: 10-20 MB (< 

20 characters)
• For MMORPG, still about 1-4 MB because of 

the large number of unique characters
• For strategy games per-unit budget < 1 MB!
• Terrain – 20-40 MB, often just a window of a 

giant texture

These figures are composite numbers, but represent fairly typical scenarios found in 
real world situations. 



22

A Train Ride Through a Real GameA Train Ride Through a Real Game

• Sid Meier’s Railroads! renders ~1 million 
polygons a frame

• Large number of rendered objects on the 
scene ~2-5 thousand per frame

• Trees, trains, cities, terrain, decorations, 
track, etc etc.

• But, strategy games framerate can be a little 
lower then action games 

Here we bring a case study of an actual game under development, “Sid Meier’s 
Railroads!” by Firaxis, to show real-world computation and storage budgets.



23

Sid MeierSid Meier’’s Railroads!: Where the s Railroads!: Where the 
Detail IsDetail Is

• We put much more detail on gameplay 
elements then filler elements, usually 2-4x 
resources

• Can’t do more than this or we start to see 
objects become out of place. A high quality 
object rendered on a low quality landscape 
stands out



24

Sid MeierSid Meier’’s Railroads!: Characterss Railroads!: Characters

• Railroads trains and industries are like 
characters

• Each one has a several large texture maps, 
totally ~4-8 megabytes

• An articulated character would likely have 
double this



25

Sid MeierSid Meier’’s Railroads!: Landscapes Railroads!: Landscape

• Outdoor scene: landscape 50-100% of frame
• Terrain geometry not complex, but shading is
• Terrain pixel shader is 150 instructions long 

and performs 24 texture fetches
• Terrain pixel shader uses compositing of tiled 

textures to reduce the terrain texture 
requirements from ~300MB to ~30MB

• Runs at ~30 fps on high end PCs at 
1600x1200 with 4x MSAA

The terrain pixel shader is an example of trading off computations for storage. A 
high-resolution unique texture over the terrain would require about 300 MB. By tiling 
multiple textures and performing complex compositing operations in the pixel 
shader, the appearance of a unique texture is achieved with only about 30MB of 
texture data.



26

Sid MeierSid Meier’’s Railroads!: Trees/Clutters Railroads!: Trees/Clutter

• “Clutter” adds detail to the world
• Mostly instanced objects; <8MB of textures
• Outdoor scene; assume that 25%-50% of 

the frame is covered by trees, rocks, or 
some other type of object

• Huge triangle counts! At 400 polygons a 
tree, can easily break 500,000 triangles just 
on trees. However, fill is low, so opportunity 
for complex lighting calculations

In contrast to the terrain, which had a low triangle count but covered most of the 
screen, the “clutter” has a very high triangle count but covers less of the screen. 
This case a more expensive  pixel shader can be used for more complex shading.



27

Sid MeierSid Meier’’s Railroads!: s Railroads!: 
Cities/BuildingsCities/Buildings

• Outdoor scene; cities and buildings cover ~10% of 
the frame on average (sometimes much higher)

• Geometry simple (rectilinear buildings), but uses an 
large amount of texture memory

• Lots of shared textures, however, we use only 6MB 
total for all city rendering, but more then 40MB on 
industries! However, only a few industries are 
visible at any one time

In Railroads!, the percentage of the frame covered by cities and buildings varies, it 
is low on average but there are times when it is higher.



28

So, whatSo, what’’s in a modern game?s in a modern game?

• 1 Million+ triangles rendered per frame
– Assumes each object rendered at least twice (for shadows)

• Up to 200 instruction pixel shaders per pixel, and as 
many as 500 for special geometry (that doesn’t fill 
screen), 20-30 texture fetches.

• Total texture budget is circa 150MB per frame, and 
300MB per level

• Vertex data isn’t cheap, 60-120MB of model data, 
keeping vertex sizes down very important



1

Game DevelopmentGame Development

• Game Platforms (Dan)

• Computation and Storage Constraints (Dan)

• Production Considerations (Naty)

• The Game Rendering Environment (Naty)

Now we shall discuss the various production considerations which affect reflectance 
rendering in games.



2

Production ConsiderationsProduction Considerations

• The Game Art Pipeline

• Ease of Creation

First we will discuss the production pipeline for creating game art, in particular as it 
pertains to reflection models. Then we shall discuss issues relating to reflection 
models which affect the ease of art creation.



3

Modern Game Art PipelineModern Game Art Pipeline

• Initial Modeling

• Detail Modeling

• Material Modeling

• Lighting

• Animation

This is a somewhat simplified and idealized version of the modern game 
development pipeline. In reality, production does not proceed in an orderly fashion 
from one stage to the next – there is frequent backtracking and iteration. Also, not 
all stages are present for all types of data – the lighting stage is typically performed 
for rigid scenery and animation is typically performed for deforming characters, so 
both are almost never performed on the same model. We will discuss different types 
of game models later in the course.



4

Initial ModelingInitial Modeling

• Performed in a general-purpose package
– Maya, MAX, Softimage, Lightwave, Silo

• Modeling geometry to be used in-game

• Creating a surface parameterization for 
textures (UV mapping)

The software packages in which the initial modeling is performed are traditionally 
the general-purpose workhorse of game art development, although many of their 
functions are being taken over by a new class of specialized detail modeling 
packages. The in-game geometry (as opposed to detail geometry which is only 
used to create textures) is edited here. This geometry needs to be amenable to 
level-of-detail (LOD), animation, surface parameterization and efficient in-game 
processing and rendering – these all impose constraints on how the geometry can 
be modeled.
Creating a surface parameterization is an important part of the artists task. This 
parameterization is used for the various textures which will be attached to the 
model. Automatic tools for generating these parameterizations have historically 
produced results of insufficient quality, however they are steadily improving. In the 
past, surface parameterizations included large amounts of repetition to save texture 
memory, now the growing emphasis on normal maps (which can rarely be repeated 
over a model) means that most parameterizations are unique over the model (or at 
least over half a model in the common case of bilaterally symmetrical models). This 
may also differ between scenery and character models (repeating / tiled textures 
are more common in scenery modeling).



5

Initial Modeling, ParameterizationInitial Modeling, Parameterization

IMAGE BY K. BRUNS

Here we see an example of initial modeling of a game character’s head in Maya. 
The in-game geometry can be seen, as well as the UV parameterization. Note that 
the parameterization is highly continuous. This is more important than low distortion, 
and is the reason why parameterizations are so commonly generated by hand. 
Discontinuities in the UV parameterization will require duplicating vertices along the 
discontinuity, and may also cause undesirable rendering artifacts in some cases if 
they are too prevalent throughout the model.
As mentioned before, the construction of the in-game model and its 
parameterization must obey multiple constraints and requires much skill and 
experience to perform well.



6

Modern Game Art PipelineModern Game Art Pipeline

• Initial Modeling

• Detail Modeling

• Material Modeling

• Lighting

• Animation

The next step is detail modeling. This has become more important in recent years.



7

Detail ModelingDetail Modeling

• In the past this included only 2D texture 
painting, usually performed in Photoshop

• Now a new class of specialized detail 
modeling packages has arisen
– ZBrush, Mudbox

– Enable powerful sculpting / painting of surface 
geometry detail, and 3D painting of colors

• 2D texture painting apps still used



8

Detail Modeling Detail Modeling –– Initial ModelInitial Model

IMAGE BY K. BRUNS

Here we see the same character, after he has been exported from Maya and 
imported into ZBrush. ZBrush was the first detail modeling package and is still by far 
the most popular.



9

Detail Modeling Detail Modeling –– Geometric DetailGeometric Detail

IMAGE BY K. BRUNS

The relatively low-resolution in-game model has its resolution significantly increased 
and smoothed, then fine geometric details are painted / sculpted into the model. 
These details will not be present in the in-game geometry, instead they will be 
“baked” into textures of various kinds.



10

Detail Modeling Detail Modeling –– Normal MapNormal Map
IMAGE BY K. BRUNS

The most common type of texture used to represent the added geometric detail is 
the tangent-space normal map. This is a texture where the colors represent the 
coordinates of surface normal vectors in the local frame of the in-game (original, 
lower-resolution) mesh. This local frame is referred to as a tangent space. Detail 
modeling applications have various controls as to how the normal map is created 
and in which format it is saved. The generation of such a normal map can be seen 
as a process of sampling the surface normals of the high-detail model onto the 
surface parameterization of the low-detail model.
Here we see another reason why the surface texture parameterization created by 
the artist in the previous step is important. This parameterization is not only used to 
map textures such as the normal map onto the surface; it is also used to define the 
local surface frame into which the surface normals are resampled.
The normal map extraction is not always performed in the detail modeling 
application – sometimes the high-detail geometry is exported, and both it and the 
low-detail geometry are imported into a specialized normal map generation 
application, such as Melody from NVIDIA. General-purpose modeling packages 
such as Maya also provide normal map generation functionality.



11

Detail Modeling Detail Modeling –– Normal MapNormal Map

IMAGE BY 
K. BRUNS

Here we see the resulting normal map texture which was generated from ZBrush. In 
this common representation, the red, green and blue channels of the texture 
represent the X, Y and Z coordinates respectively of the surface normal vector in 
tangent space. The -1 to 1 range of the coordinates has been remapped to the 0 to 
1 range of the texture channels. The common purple color we see here is RGB = 
{0.5,0.5,1}, which represents a surface normal of {0,0,1} in tangent space, namely a 
surface normal which is aligned with that of the underlying low-resolution surface. 
Divergences from this color represent areas where the surface normal diverges 
from that of the low-resolution surface.
Note that many other representations of the normal map are possible. For example, 
it is common to only store the X and Y components of the normal, generating the Z 
component in the shader based on the fact that the normal vector is known to lie on 
the upper hemisphere.



12

Detail Modeling Detail Modeling –– TexturesTextures

IMAGE BY K. BRUNS

Many other surface properties besides surface normals are stored in textures. The 
most common (and until recently, the only) such texture is the diffuse color or 
spectral albedo texture. We see here the color texture which in an early state of 
work in Photoshop (by far the most common 2D texture editing application). More 
recently, many other surface properties are stored in textures. Any BRDF parameter 
can be stored in a texture, although if the parameter affects the final radiance in a 
highly non-linear manner, the hardware texture filtering will not produce the correct 
result. There will be more discussion on this subject later in the course.
A highly continuous parameterization will make it much easier to paint the texture, 
which is yet another reason why this is a desirable property.



13

Detail Modeling Detail Modeling –– TexturesTextures

IMAGE BY K. BRUNS

Here is the result of applying the work-in-progress texture we just saw to the model 
in ZBrush. It is possible to work closely between the 2D texture painting application 
and the 3D detail modeling application, changes in one will be quickly mirrored in 
the other so the artist has immediate feedback of the results of their changes.
Detail modeling applications also allow painting surface colors directly onto the 
surface of the model, which is starting to become a popular alternative to 2D 
painting tools. In most cases, both options are used together since each type of tool 
is convenient for performing certain operations.



14

Detail Modeling Detail Modeling –– Final TexturesFinal Textures

IMAGE BY K. BRUNS

Here we see the final painted texture in Photoshop, 



15

Detail Modeling Detail Modeling –– Final TexturesFinal Textures

IMAGE BY K. BRUNS

And in ZBrush.



16

Modern Game Art PipelineModern Game Art Pipeline

• Initial Modeling

• Detail Modeling

• Material Modeling

• Lighting

• Animation

The next step is material modeling. This is an important step for this course, and 
uses the results of the previous step.



17

Material ModelingMaterial Modeling

• This is usually performed back in the 
general-purpose modeling application

• The various textures resulting from the detail 
modeling stage are applied to the in-game 
model, using its surface parameterization

• The shaders are selected and various 
parameters set via experimentation 
(“tweaking”)

This is where the artist will choose from the available shaders, so if there are 
shaders supporting different reflectance models or BRDFs the artist will decide 
which is most applicable to the object. The entire object does not have to use the 
same shader, although there are significant performance advantages to maximizing 
the amount of geometry which can be drawn with a single shader.



18

Material ModelingMaterial Modeling

IMAGE BY K. BRUNS

Here we see the in-game model with the normal map generated from ZBrush and 
the color map painted in Photoshop applied. The open dialog allows the artist to 
select the shaders used, and once selected, to select which textures are used and 
various other parameters which are not derived from textures. For example, in this 
shader although the diffuse color is derived from a texture, the specular color is a 
shader setting. However, this color is multiplied with a per-pixel scalar factor derived 
from the Alpha channel of the color texture. The specular power is also a setting 
and not derived from a texture. In general, deriving parameters from textures makes 
the shader more expressive, enabling the artist to represent different kinds of 
materials in a single shader (which has some advantages). On the other hand, 
increasing the amount of textures used uses up more storage, and may also cause 
the shaders to execute considerably more slowly.



19

Modern Game Art PipelineModern Game Art Pipeline

• Initial Modeling

• Detail Modeling

• Material Modeling

• Lighting

• Animation

The next step is lighting. This refers to “pre-lighting”, which is the pre-computation of 
lighting values. 



20

LightingLighting

• Actually pre-lighting
– Pre-computation of the effects of static lights on 

static geometry, usually with global illumination

• In the past, just irradiance data “baked” from 
a GI renderer or custom tool

• Now more complex data often used
– A simpler example is ‘ambient occlusion’ data

This is only done for certain kinds of geometry and materials, and we will discuss it 
further in a later section of the course. One noteworthy detail about lighting tools is 
that they are sometimes used to generate “ambient occlusion” factors into vertices 
or textures for use in later rendering.



21

Modern Game Art PipelineModern Game Art Pipeline

• Initial Modeling

• Detail Modeling

• Material Modeling

• Lighting

• Animation

Finally, we have animation. This is only relevant for certain kinds of models 
(scenery is rarely animated). The two most common kinds of animation used in 
games are bone deformation and blend shapes (also known as morph targets).



22

Animation Animation –– Morph TargetsMorph Targets

IMAGE BY K. BRUNS

Here we see the final character being animated in Maya, using blend shapes or 
morph targets. The animation is most commonly performed in the general-purpose 
modeling application.



23

Background and ForegroundBackground and Foreground

•• Game scenes are commonly separated into Game scenes are commonly separated into 
foreground and background objectsforeground and background objects

foregroundforeground

We have mentioned several times that different kinds of models are sometimes 
handled differently in the art pipeline. These are the main types of game models.
Background objects are mostly static, and include scenery (such as rooms, ground, 
trees, etc.). Foreground objects include characters, and other objects which might 
need to move and / or deform.
Note that which category an object can belong to is somewhat dependent on the 
specific game; in one case a chair may be static and a background object, in 
another game the chair may be movable by the character and act as a foreground 
object.
The example scene is from a game which is currently under development by 
Naughty Dog.



24

Unique and Instanced BackgroundUnique and Instanced Background

•• Background objects are sometimes further Background objects are sometimes further 
separated into unique and instanced backgroundseparated into unique and instanced background

InstancedInstanced
backgroundbackground

Background objects are sometimes further differentiated into unique, seamlessly 
connected parts (such as walls and floor) and instanced discrete objects.
Here we have marked the barrels as instanced background for example’s sake, 
however if they are desired to move or interact in other ways they may actually be 
foreground objects.
This is another example scene from the same game.



25

Production ConsiderationsProduction Considerations

• The Game Art Pipeline

• Ease of Creation

Now we shall discuss issues relating to reflection models which affect the ease of 
art creation.



26

BRDF ParametersBRDF Parameters

• Preferably, BRDF parameters should clearly 
control physically meaningful values
– Directional-hemispherical surface reflectance 

(“specular color”)

– Albedo of body reflectance (“diffuse color”)

– Surface roughness

– Etc.



27

BRDF ParametersBRDF Parameters

• Parameters which map to physical quantities 
enable artists to explore parameter space
– Changing parameters such as surface reflectance, 

body reflectance and roughness independently

– Avoiding inadvertently creating materials which 
reflect significantly more energy than they receive

– Mimicking the appearance of actual materials 
when desired



28

BRDF ParametersBRDF Parameters

• In previous game generations, these 
features were less important
– Visuals tended to be more stylized

– Lighting environments less complex
• limited to a 0 to 1 range of values

• Simplistic indirect / ambient light models

– Games now use more realistic lighting and scenes, 
which requires more care in material creation

We will show specific BRDFs and show how to make their parameters more 
physically meaningful in a later section.



29

ShiftShift--VarianceVariance

• Also important for ease of use

• Very few game objects are composed of 
purely homogeneous materials

• At least some of the BRDF parameters must 
be easily derivable from textures



30

ShiftShift--VarianceVariance

• It is also important to be able to combine the 
BRDF easily with normal mapping

• Anisotropic BRDFs may require even more 
control over the local surface frame per-pixel
– “Twist maps” which vary the tangent direction

– More on this later in the course

• Some BRDF rendering methods have 
difficulty supporting shift-variance

Since shift-variance is so important for artist control, BRDF rendering methods 
which preclude it will have limited applicability in games.



31

Game DevelopmentGame Development

• Game Platforms (Dan)

• Computation and Storage Constraints (Dan)

• Production Considerations (Naty)

• The Game Rendering Environment (Naty)

Finally in this section, we shall discuss the rendering environment within which 
reflection models are used in games.



32

The Game Rendering EnvironmentThe Game Rendering Environment

• Lighting Environments

• Bump, Twist and Relief Mapping

First we shall discuss the different kinds of lighting environments which are used to 
light reflection models in games. Next, we discuss issues relating to per-pixel detail 
methods such as bump, twist and relief mapping as they affect the implementation 
of reflection models.



33

Lighting EnvironmentsLighting Environments

•• Game environments are lit by sun, sky, artificial Game environments are lit by sun, sky, artificial 
light, indirect lighting, etc.light, indirect lighting, etc.

Outdoor, daytime environments are lit by a combination of sunlight and skylight. 
Indoor environments are mostly lit by artificial lighting with some sunlight, nighttime 
urban scenes are lit only by artificial lights, etc. Indirect lighting is important as well 
as direct light sources. Here we see a nighttime scene from the game by Naughty 
Dog.



34

Lighting EnvironmentsLighting Environments

• The shaders used in games do not support 
arbitrary lighting

• Lighting is simplified in some way, usually 
into several terms which are handled in 
different ways by shaders

• The simplified lighting used by a shader is 
called its lighting environment



35

Background and ForegroundBackground and Foreground

•• Game scenes are commonly separated into Game scenes are commonly separated into 
foreground and background objectsforeground and background objects

foregroundforeground

This is a repeat of a previous slide. We show it here again because this division is 
significant for how lighting is handled in games. Lighting is often handled quite 
differently on background and foreground geometry.



36

PrelightingPrelighting

• Static and dynamic lights often separated

• Static lighting often precomputed
– On static (background) geometry: lightmaps or 

“pre-baked” vertex lighting

– On dynamic (foreground) geometry: light probes

– Can include global illumination effects

• Dynamic lights can be added later
– Due to the linearity of lighting

A common trend in game development is to move as much computation as possible 
to “tools time” – pre-compute data using custom tools which is later used in the 
game. This usually involves a computation vs. memory tradeoff which must be 
carefully considered, but in many cases it is worth doing.
In many games, much of the lighting is assumed not to change (most games do not 
feature changing sun and sky light with time of day, and do not often allow changing 
interior lighting during gameplay). The affect of these static lights can be computed 
ahead of time and stored in different ways.



37

Prelighting and Global IlluminationPrelighting and Global Illumination

• Since prelighting is computed ahead of time, 
global illumination is commonly used

• Similar to global illumination for rendering
– Difference is final data generated (surface lighting 

information and light probes vs. screen pixels)



38

Prelighting on BackgroundPrelighting on Background

• Usually (low-resolution) textures or vertex 
data

• Combined with (higher-resolution, reused) 
texture data

• Effective compression
– Memory limits preclude storing unique high-

frequency lighting data over the entire scene

The low-resolution lighting information is usually stored over the scene in a unique 
manner (no repetition or sharing, even between otherwise identical objects). 
Memory limitations therefore constrain this information to be stored at a low spatial 
frequency. For this reason it is very advantageous to combine it with higher-
frequency data which can be repeated / reused between different parts of the scene 
(such as albedo textures or normal maps).



39

Prelighting on BackgroundPrelighting on Background

• In the past, irradiance values
– Combined with higher-frequency albedo data

– Diffuse (Lambertian) surfaces only

• More complex lighting is becoming common
– Pioneered by Half-Life 2  (Valve, 2004)

– Directional information allows incorporating
• High-frequency normals

• Other (not general) BRDFs

The use of simple prelighting (irradiance values only) dates back to around 1996 
(Quake by id software). The use in games of prelighting incorporating directional 
information was pioneered by Valve with the release of Half-Life 2 in 2004. There 
separate irradiance information is stored for each of three surface directions which 
form an orthonormal basis. The actual surface normal is combined with this data in 
the pixel shader to compute the final lighting. This lighting information is used for 
diffuse lighting only in Half-Life 2, however extensions for certain types of specular 
reflectance have been suggested. In general, arbitrary BRDFs cannot be rendered 
with this type of lighting data.
Directional prelighting is currently an active area of research and development in the 
game industry (and hopefully in the research community; see “Normal Mapping for 
Precomputed Radiance Transfer” by Peter-Pike Sloan, SI3D 2006). 



40

Prelighting: Light ProbesPrelighting: Light Probes

• Approximate light field

• Sampled at discrete 
positions in scene

• Radiance or irradiance 
as function of direction
– Spherical harmonics, 

environment maps, etc.

• Foreground objects 
interpolate, then apply

The foreground objects move throughout the scene, are not seamlessly connected 
to other objects and are usually small in extent compared to the spatial variations in 
the scene lighting. For these reasons, a common approximation is to treat the 
prelighting as distant lighting and compute it at the center of the object. This is 
usually achieved by interpolating between scattered (regular or irregular) spatial 
samples called light probes. Each light probe stores a function over the sphere, 
either of incident radiance (as a function of incident direction) or of irradiance (as a 
function of surface normal direction). The position of the object center is used to 
interpolate these to get a light probe for use in lighting the object.
Similarly to background prelighting data, this is usually applied to Lambertian 
surfaces, with occasional extensions for some limited types of specular reflectance. 
Commonly to handle highly specular reflections, high-resolution environment maps 
are used, with very sparse spatial sampling (perhaps a single map per scene).
The example character is from the game by Naughty Dog.



41

Dynamic LightingDynamic Lighting

•• Dynamic / highDynamic / high--frequency lights, frequency lights, 
usually point or directional lightsusually point or directional lights

If a light can change in position, direction (such as a flashlight carried by a 
character) or perhaps just in its color and intensity (such as a flickering torch on a 
wall) then it cannot usually be handled via prelighting. High-frequency lighting (such 
as local point lights, or sharp shadows) is also difficult to handle with prelighting. 
These cases are commonly handled by applying dynamic light sources, usually 
point or directional lights. Here we see an example scene from the game by 
Naughty Dog which uses dynamic lighting.



42

The Reflection Equation with Point / The Reflection Equation with Point / 
Directional LightsDirectional Lights

• Important case for real-time rendering 
– Lighting from infinitely small / distant light sources

– Ambient / indirect lighting is computed separately

– Point lights characterized by intensity I and position

– Directional lights characterized by direction and I/d2

( ) ( )∑=
l

lelr
l

l
eepoint f

d
IL θωωω cos,2

This is a repeat of a previous slide. We bring it again here to discuss a common 
issue with how point / directional light intensity values are commonly represented in 
games. Note that arbitrary BRDFs are relatively easy to handle with this kind of 
lighting, since the BRDF just has to be evaluated at a small set of discrete 
directions.



43

Light IntensitiesLight Intensities

• Lambertian surface lit by single point light
– Radiometric version

– “Game version”

l
l

l
e d

IL θ
π

cosρ
2=

l
l

l
e d

iL θcosρ2=
π

l
l

Ii ≡

Before we continue our discussion of point and directional lights, there is an issue 
which should be noted. The intensity values commonly used for point and 
directional lights (both in game engines and in common DCC applications such as 
MAX and Maya) are closely related, but not equal to the radiometric radiant intensity 
quantity. The difference will become clear if we examine a Lambertian surface lit by 
a single point light, both as a radiometric equation and in the form commonly used 
in game engine. Here we see that the light “game intensity” value (here denoted by 
il) differs from the light’s radiant intensity value (Il) by a factor of 1/π.
This factor needs to be noted when adapting reflectance models from books or 
papers for use in games. If the standard “game intensities” are used, then the BRDF 
needs to be multiplied by π (this multiplication will tend to cancel out the 1/π
normalization factors which are common in many BRDFs). Game developers should 
also note the presence of this factor when using other kinds of lighting than point 
lights, since it may need to be removed in such cases. Another option is for game 
developers to use the radiometrically correct quantities at least during computation 
(using them throughout the pipeline could be difficult since lighting artists are often 
used to the “game intensity” values).



44

Point Light Distance AttenuationPoint Light Distance Attenuation

• More divergence from 
radiometric math

• Unlike 1/dl
2 factor, fd

usually clamps to 1

• Reasons for fd:
– Aesthetic, artist control

– Practical (0 at finite dl)

– Simulate non-point light

( ) ( ) lelr
l

l
ee f

d
IL θωωω cos,2=

( ) ( ) ( ) lelrldlee fdfiL θωωπω cos,=

( ) ( ) ( ) lelrllee fdiL θωωπω cos,=

Another way in which the math typically used in games for lighting with point lights 
differs from the radiometric math for point lights is in the distance attenuation 
function. A straight inverse square function is rarely used, usually some other 
‘distance attenuation’ function is used. These functions are typically clamped to 
1 close to the light (unlike the inverse square factor, which can reach arbitrarily 
large values close to the light) and decrease with increasing distance, usually 
reaching 0 at some finite distance from the light (again unlike the inverse square 
factor).

Such ‘tweaked’ distance attenuation factors have a long history and are not unique 
to games, being in the earliest OpenGL lighting models and being used in DCC 
applications as well as other types of production rendering (such as movie 
rendering). Note that games will often use these distance attenuation functions 
in the prelighting stage as well as for dynamic runtime lights.

There are three main reasons for using a function other than a straight inverse 
square falloff:

1) More control by the artist to achieve a certain ‘look’ for the scene
2) Performance – if the light’s effect drops to 0 at a finite distance, then it can be 

left out of lighting computations for objects beyond that distance
3) Actual light sources are not zero-size points and have some spatial extent. 

These lights will have more gradual falloffs than point lights, and this visual 
effect can be simulated by tweaking the falloff function.



45

Spotlights and Projected TexturesSpotlights and Projected Textures

• Real light sources usually have some 
angular variation in emitted radiance

• This is often simulated by applying an 
angular falloff term, modulating the light by a 
projected texture, etc.

Usually this will result in the light only emitting radiance within a cone or frustum. A 
light which illuminates in all directions (also called an omni light) can also project a 
texture using a cube map, this can be useful to simulate some types of light fixtures.



46

Other Point / Directional LightsOther Point / Directional Lights

• Many other variations are possible
– Vary the direction to the light to simulate various shapes of 

light such as linear lights

– Combine various distance and angular falloff terms

• In the end, these all boil down to different ways of 
computing il and ωl for the rendering equation:

( ) ( ) ( ) lelrllee fdiL θωωπω cos,=

For an example of a complex point light variation used in film rendering, see 
“Lighting Controls for Computer Cinematography” (Ronen Barzel, Journal of 
Graphics Tools 1997).
The computation of the direction and intensity of the light are typically performed in 
the pixel shader, and the result is combined with the BRDF to compute the final 
lighting result (more details about this later in the course).



47

ShadowsShadows

•• Dynamic lights may cast shadows (modulate Dynamic lights may cast shadows (modulate iill by by 
an occlusion factor)an occlusion factor)

Here we see examples of shadows in another scene from the game by Naughty 
Dog.



48

ShadowsShadows

• Games usually use some variation on depth 
maps for shadows from dynamic lights
– Stencil shadow volumes also (more rarely) used

• To simulate non-point lights, soft shadows 
are often desirable
– Usually achieved by multiple depth map lookups



49

ShadowsShadows

• Other approaches used for light occlusion 
(though not for point / directional lights) 
include ambient occlusion terms and 
precomputed radiance transfer (PRT)

• Some of these will be discussed later in the 
course



50

Dynamic Texture LightingDynamic Texture Lighting

• We saw environment maps used as 
prelighting

• They can also be rendered dynamically

• Other types of texture-based dynamic 
lighting possible
– Planar reflection maps

Environment maps are textures parameterized by directions on the sphere and 
used for distant lighting. A planar reflection map is a texture which represents the 
scene reflected about a plane, this would be used to render reflections on a planar 
surface. Other types of texture-based lighting are also used.



51

Combining Prelighting and Dynamic Combining Prelighting and Dynamic 
LightsLights

• Sometimes a simple summation

• But there are often complications
– Dynamic objects casting shadows from lights 

which were included in prelighting

– Efficiency issues (divergent representations for 
prelighting and runtime lights may cause 
duplication of computation)

– Different interactions with BRDFs

An example of the first issue is an outdoor scene with sunlight. We would want to 
include the sunlight in the prelighting on static objects to take account of indirect 
illumination resulting from sunlight, but we also want dynamic objects to case 
shadows from the sun on static objects, which is difficult if the sunlight has already 
been accounted for in the prelighting. There are various solutions to this problem, 
and similar problems, which are outside the scope of this course.
An example of divergent representations for prelighting and runtime light is a 
foreground object lit both by a spherical harmonic light probe and several point 
lights. If the object is Lambertian, the spherical harmonic coefficients for the lights 
can often be combined with those from the light probe interpolation, thus resulting in 
improved efficiency.
An example of prelighting and dynamic lights interacting differently with BRDFs: 
again a foreground object lit by a combination of spherical harmonic light probes 
and point lights. If the object is not Lambertian, the reflectance models used for the 
prelighting and runtime lights will differ.



52

Light ArchitectureLight Architecture

• Usually games will have a general structure 
for the light environments supported
– This will affect shaders, lighting tools, and data 

structures and code used for managing lights



53

Light ArchitectureLight Architecture

• Light architectures vary in the number of 
lights supported in a single rendering pass
– Pass-per-light (including a separate pass for 

indirect / prelighting) 

– All lights in one pass: feasible on newer hardware, 
but potential performance and combinatorial issues

– Approximate to N lights: like previous, but excess 
lights are merged / approximated

Pass-per-light architectures have the advantage of simplicity. Shaders only have to 
be written to support a single light, and only one variation needs to be written for 
each type of light. The object has to go through the entire graphics pipeline for each 
light affecting it, which can introduce significant overhead. On the other hand, 
efficiencies can be gained by only rendering the part of the screen covered by the 
current light. Certain shadow approaches (such as stencil shadows) require a pass-
per-light approach.
All-lights-in-one pass architectures only process the object once, regardless of 
lighting complexity. There are two approaches to writing shaders for such an 
architecture: a single shader using dynamic branching (which is slower), or 
compiling a shader variation for each possible light set (which may cause a 
combinatorial explosion). Limits on the number of textures may restrict the number 
of lights casting shadows. 
A common approach is to assume a standard light set (for example, an ambient 

term and three point lights) and in cases where the actual set of lights affecting an 
object is more complex than the standard set, merge the excess lights together, or 
discard them, or otherwise approximate the actual light set with a standard light set. 
This architecture can yield the highest (and more importantly, the most consistent) 
performance, but introduces complexity and possible temporal artifacts (‘pops’) in 
the approximation process.



54

The Game Rendering EnvironmentThe Game Rendering Environment

• Lighting Environments

• Bump, Twist and Relief Mapping

Now we shall discuss issues relating to per-pixel detail methods such as bump, 
twist and relief mapping as they affect the implementation of reflection models.



55

The BRDFThe BRDF

• Incident, excitant directions defined in the 
surface’s local frame (4D function)

N

T
φi

φe

θe θi

ωe ωi

This is a repeat of a previous slide. This will be relevant for the discussion of bump, 
twist and relief mapping.



56

Local Frames for BRDF RenderingLocal Frames for BRDF Rendering

• Isotropic shaders only require a surface 
normal direction or vector

• In the past, this has usually been stored on 
the vertices

• More recently, bump or normal mapping has 
become more common
– Storing normal information in textures

– Local frame now varies per-pixel



57

Local frames for BRDF RenderingLocal frames for BRDF Rendering

• Also, some anisotropic surface shaders 
(such as hair) may utilize twist maps
– Rotate the local frame per-pixel

• Although normal and twist maps create a 
per-pixel local frame, in practice 
computations can still occur in other frames 
such as world space or the ‘unperturbed’
tangent frame



58

Relief MappingRelief Mapping

• Relatively recent development

• Texture coordinates are perturbed to account 
for relief or parallax effects

• Various flavors exist

• Affects the reflectance computation, since all 
texture data must use perturbed texture 
coordinates



59

PhysicallyPhysically--Based Reflectance Based Reflectance 
for Gamesfor Games

10:15 10:15 -- 10:30: Break10:30: Break




