Numerical Robustness
(for Geometric Calculations)

Christer Ericson
Sony Computer Entertainment

Slides @ http://realtimecollisiondetection.net/pubs/
Numerical Robustness
(for Geometric Calculations)

Christer Ericson
Sony Computer Entertainment

Slides @ http://realtimecollisiondetection.net/ pubs/
Takeaway

- An appreciation of the pitfalls inherent in working with floating-point arithmetic.
- Tools for addressing the robustness of floating-point based code.
- Probably something else too too.
THE PROBLEM
Floating-point arithmetic
Floating-point numbers

- Real numbers must be approximated
 - Floating-point numbers
 - Fixed-point numbers (integers)
 - Rational numbers
 - Homogeneous representation

- If we could work in real arithmetic, I wouldn’t be having this talk!
Floating-point numbers

- IEEE-754 single precision
 - 1 bit sign
 - 8 bit exponent (biased)
 - 23 bits fraction (24 bits mantissa w/ hidden bit)

This is a normalized format

\[V = (-1)^s \times (1.f) \times 2^{e-127} \]
Floating-point numbers

IEEE-754 representable numbers:

<table>
<thead>
<tr>
<th>Exponent</th>
<th>Fraction</th>
<th>Sign</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0<e<255</td>
<td></td>
<td></td>
<td>(V = (-1)^s \times (1.f) \times 2^{e-127})</td>
</tr>
<tr>
<td>e=0</td>
<td>f=0</td>
<td>s=0</td>
<td>(V = 0)</td>
</tr>
<tr>
<td>e=0</td>
<td>f=0</td>
<td>s=1</td>
<td>(V = -0)</td>
</tr>
<tr>
<td>e=0</td>
<td>f≠0</td>
<td></td>
<td>(V = (-1)^s \times (0.f) \times 2^{e-126})</td>
</tr>
<tr>
<td>e=255</td>
<td>f=0</td>
<td>s=0</td>
<td>(V = +Inf)</td>
</tr>
<tr>
<td>e=255</td>
<td>f=0</td>
<td>s=1</td>
<td>(V = -Inf)</td>
</tr>
<tr>
<td>e=255</td>
<td>f≠0</td>
<td></td>
<td>(V = NaN)</td>
</tr>
</tbody>
</table>
Floating-point numbers

- In IEEE-754, domain extended with:
 - \(-\text{Inf}, +\text{Inf}, \text{NaN}\)

- Some examples:
 - \(a/0 = +\text{Inf}, \text{if } a > 0\)
 - \(a/0 = -\text{Inf}, \text{if } a < 0\)
 - \(0/0 = \text{Inf} - \text{Inf} = \pm\text{Inf} \cdot 0 = \text{NaN}\)

- Known as Infinity Arithmetic (IA)
Floating-point numbers

- IA is a potential source of robustness errors!
 - +Inf and –Inf compare as normal
 - But NaN compares as unordered
 - NaN != NaN is true
 - All other comparisons involving NaNs are false

These expressions are not equivalent:

```c
if (a > b) X(); else Y();
```

```c
if (a <= b) Y(); else X();
```
Floating-point numbers

- But IA provides a nice feature too
- Allows not having to test for div-by-zero
 - Removes test branch from inner loop
 - Useful for SIMD code
- (Although same approach usually works for non-IEEE CPUs too.)
Floating-point numbers

- Irregular number line
 - Spacing increases the farther away from zero a number is located
 - Number range for exponent $k+1$ has twice the spacing of the one for exponent k
 - Equally many representable numbers from one exponent to another
Floating-point numbers

- Consequence of irregular spacing:
 - $-10^{20} + (10^{20} + 1) = 0$
 - $(-10^{20} + 10^{20}) + 1 = 1$

- Thus, not associative (in general):
 - $(a + b) + c \neq a + (b + c)$

- Source of endless errors!
Floating-point numbers

All discrete representations have non-representable points
The floating-point grid

⚠️ In floating-point, behavior changes based on position, due to the irregular spacing!
EXAMPLE

Polygon splitting
Polygon splitting

Sutherland-Hodgman clipping algorithm
Polygon splitting

Enter floating-point errors!
Polygon splitting

$ABCD$ split against a plane
Polygon splitting

Thick planes to the rescue!

Desired invariant:
\[\text{OnPlane}(I, \text{plane}) = \text{true} \]

where:
\[I = \text{IntersectionPoint}(PQ, \text{plane}) \]
Polygon splitting

Thick planes also help bound the error
Polygon splitting

ABCD split against a thick plane
Polygon splitting

Cracks introduced by inconsistent ordering
EXAMPLE

BSP-tree robustness
BSP-tree robustness

- Robustness problems for:
 - Insertion of primitives
 - Querying (collision detection)

- Same problems apply to:
 - All spatial partitioning schemes!
 - (k-d trees, grids, octrees, quadtrees, ...)

BSP-tree robustness

Query robustness
BSP-tree robustness

Insertion robustness

Diagram showing the robustness of a BSP-tree with labeled nodes and lines.
BSP-tree robustness

How to achieve robustness?

- Insert primitives conservatively
 - Accounting for errors in querying and insertion
- Can then ignore problem for queries
EXAMPLE
Ray-triangle test
Ray-triangle test

- Common approach:
 - Compute intersection point P of ray R with plane of triangle T
 - Test if P lies inside boundaries of T

- Alas, this is not robust!
Ray-triangle test

A problem configuration
Ray-triangle test

intersecting R against one plane
Ray-triangle test

Intersecting R against the other plane
Ray-triangle test

- Robust test must **share calculations** for shared edge AB
- Perform test directly in 3D!
 - Let ray be $R(t) = O + td$
 - Then, sign of $d \cdot (OA \times OB)$ says whether d is left or right of AB
 - If R left of all edges, R intersects CCW triangle
 - **Only then** compute P
- Still errors, but manageable
Ray-triangle test

“Fat” tests are also robust!
EXAMPLES SUMMARY

- Achieve robustness through...
 - (Correct) use of tolerances
 - Sharing of calculations
 - Use of fat primitives
TOLERANCES
Tolerance comparisons

- Absolute tolerance
- Relative tolerance
- Combined tolerance
- (Integer test)
Absolute tolerance

Comparing two floats for equality:

```c
if (Abs(x - y) <= EPSILON) ...
```

⚠️ Almost never used correctly!
⚠️ What should EPSILON be?
 ✨ Typically arbitrary small number used! OMFG!!
Absolute tolerances

Delta step to next representable number:

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Hex</th>
<th>Next representable number</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0</td>
<td>0x41200000</td>
<td>$x + 0.000001$</td>
</tr>
<tr>
<td>100.0</td>
<td>0x42C80000</td>
<td>$x + 0.000008$</td>
</tr>
<tr>
<td>1,000.0</td>
<td>0x447A0000</td>
<td>$x + 0.000061$</td>
</tr>
<tr>
<td>10,000.0</td>
<td>0x461C4000</td>
<td>$x + 0.000977$</td>
</tr>
<tr>
<td>100,000.0</td>
<td>0x47C35000</td>
<td>$x + 0.007813$</td>
</tr>
<tr>
<td>1,000,000.0</td>
<td>0x49742400</td>
<td>$x + 0.0625$</td>
</tr>
<tr>
<td>10,000,000.0</td>
<td>0x4B189680</td>
<td>$x + 1.0$</td>
</tr>
</tbody>
</table>
Absolute tolerances

Möller-Trumbore ray-triangle code:

```c
#define EPSILON 0.000001
#define DOT(v1,v2) (v1[0]*v2[0]+v1[1]*v2[1]+v1[2]*v2[2])
...
// if determinant is near zero, ray lies in plane of triangle
det = DOT(edge1, pvec);
...
if (det > -EPSILON && det < EPSILON) // Abs(det) < EPSILON
    return 0;
```

- Written using doubles.
 - Change to float without changing epsilon?
 - DOT({10,10,10},{10,10,10}) breaks test!
Relative tolerance

Comparing two floats for equality:

```c
if (Abs(x - y) <= EPSILON * Max(Abs(x), Abs(y)) ... 
```

- Epsilon scaled by magnitude of inputs
- But consider $\text{Abs}(x)<1.0$, $\text{Abs}(y)<1.0$
Combined tolerance

Comparing two floats for equality:

```cpp
if (Abs(x - y) <= EPSILON * Max(1.0f, Abs(x), Abs(y))

- Absolute test for Abs(x)≤1.0, Abs(y)≤1.0
- Relative test otherwise!
```
Floating-point numbers

Caveat: Intel uses 80-bit format internally
 Unless told otherwise.
 Errors dependent on what code generated.
 Gives different results in debug and release.
EXACT ARITHMETIC
(and semi-exact ditto)
Exact arithmetic

- Hey! Integer arithmetic is exact
 - As long as there is no overflow
 - Closed under $+, -, \text{ and } *$
 - Not closed under $/$ but can often remove divisions through cross multiplication
Exact arithmetic

Example: Does C project onto AB?

$D = A + tAB, t = \frac{AC \cdot AB}{AB \cdot AB}$

- **Floats:**
  ```
  float t = Dot(AC, AB) / Dot(AB, AB);
  if (t >= 0.0f && t <= 1.0f)
      ... /* do something */
  ```

- **Integers:**
  ```
  int tnum = Dot(AC, AB), tdenom = Dot(AB, AB);
  if (tnum >= 0 && tnum <= tdenom)
      ... /* do something */
  ```
Exact arithmetic

Another example:
Exact arithmetic

- **Tests**
 - Boolean, can be evaluated exactly

- **Constructions**
 - Non-Boolean, cannot be done exactly
Exact arithmetic

Tests, often expressed as determinant predicates. E.g.

\[
P(u, v, w) \equiv \begin{vmatrix} u_x & u_y & u_z \\ v_x & v_y & v_z \\ w_x & w_y & w_z \end{vmatrix} \geq 0 \iff u \cdot (v \times w) \geq 0
\]

Shewchuk's predicates well-known example

Evaluates using extended-precision arithmetic (EPA)

EPA is expensive to evaluate

Limit EPA use through “floating-point filter”

Common filter is interval arithmetic
Exact arithmetic

Interval arithmetic

- $x = [1,3] = \{ x \in \mathbb{R} \mid 1 \leq x \leq 3 \}$

Rules:

- $[a,b] + [c,d] = [a+c,b+d]$
- $[a,b] - [c,d] = [a–d,b–c]$
- $[a,b] \times [c,d] = [\min(ac,ad,bc,bd), \max(ac,ad,bc,bd)]$
- $[a,b] / [c,d] = [a,b] \times [1/d,1/c]$ for $0 \notin [c,d]$

E.g. $[100,101] + [10,12] = [110,113]$
Exact arithmetic

- Interval arithmetic
 - Intervals must be rounded up/down to nearest machine-representable number
 - Is a reliable calculation
References

BOOKS

PAPERS