
24 February 2010
Peter Kao
Insomniac Games

 Motivation
 Challenges

 Solution
 Architecture
 Objects

 Authority
 Synchronizing Changes
 Updates

 Events and Responses

 Client API

 Motivation
 Challenges

 Solution
 Architecture
 Objects

 Authority
 Synchronizing Changes
 Updates

 Events and Responses

 Client API

 Singular authority
 Authority refers to client that is in charge of state

changes on an object
▪ If multiple clients try to change state on the same

object, they will eventually be in inconsistent states

▪ Two players try to take a dropped weapon, at the same
time and both end up getting it

 Multiple clients can request changes to state, but
only one client can actually make those changes
▪ Multiple players can damage a car, but only one player

will change its health

 Choosing an Authority

 How to get clients to agree on who is to be authority
of an object

 Detect that we need to choose a new authority
because

▪ Authority not yet chosen

▪ Current authority is unresponsive (lag, unclean disconnect)

▪ Current authority has disconnected

 Having clients negotiate amongst themselves is time-
consuming and often unreliable

 Late-Join

 Client is joining a game in-progress and needs to
have their state brought up-to-date

 Who sends updates incoming client; basically,
who has the authoritative game state

 Choosing one client has problems

▪ Bandwidth strain on chosen client

▪ What if the chosen client lags out?

 Motivation
 Challenges

 Solution
 Architecture
 Objects

 Authority
 Synchronizing Changes
 Updates

 Events and Responses

 Client API

 Server to Make Decisions

 Client always has connection to server – if client
looses server connection, then the client gets
kicked out of the gam

 Chooses the authority of objects

 Has the authoritative (most up-to-date) game
state

▪ Late-joining clients can ask server for game state update

 Differences from a Traditional Server
 Does not run game-specific logic

 Maintains a list of clients to pick authority from

 Database of objects, but does not know what those
objects are
▪ Each object is just a collection of data

▪ Changes to an object’s data are routed through the server
first so it has authoritative game state

▪ Data changes are then forwarded to clients – up to the client
to make sense of data changes

 Data changes are done through messages

 Motivation
 Challenges

 Solution
 Architecture
 Objects

 Authority
 Synchronizing Changes
 Updates

 Events and Responses

 Client API

 Client vs. Server Representation

 Client has familiar view of object (e.g. an update
class)

 Subset of object data is synced – these are called
synced fields

▪ Each field of an object has its own id

▪ Not all fields need to be synced – only things that when
changed, other clients need to know about (position,
health)

 Server only knows about synced fields

 Client vs. Server Representation

Server

Object 1

Field 0: 0x42C80000

Field 1: 0x0001

Client

Object 1

// Registered as synced field 0

f32 m_health = 100.0f;

// Non-synced field

f32 m_scale = 1.0f;

// Registered as synced field 1

u16 m_state = 1;

 Each object is referenced by a unique object id that is
known to the server and each client
 For example, the same pickup pad on a level will have the

same object id on each client
 Assigning object ids
 For static objects, they can be assigned ahead of time – all

pick up pads are loaded in the same order on all clients.
▪ Pickup pad 1 gets id 1, pad 2 gets id 2, etc.

 For dynamic objects like spawned mobys, server has
object creation functionality
▪ Can ask server to assign an id for an object within a given range

 Changing object data

Server

Object 1

Field 0: 0x42C80000

Field 1: 0x0001

Client

Object 1

// Registered as synced field 0

f32 m_health = 100.0f;

// Non-synced field

f32 m_scale = 1.0f;

// Registered as synced field 1

u16 m_state = 1;

Change Health

to 100

Change Object 1, Field 0 to

0x42C8000

 Motivation
 Challenges

 Solution
 Architecture
 Objects

 Authority
 Synchronizing Changes
 Updates

 Events and Responses

 Client API

 Refers to the client that the server has chosen
to make state changes about an object

 Two types of authority, default and
permanent

 Default authority

 Authority can migrate from one client to another

 When migration occurs

▪ Object does not have an authority yet

▪ Current authority is unresponsive or has disconnected

 A client knows whether or not it’s the authority of
an object

 Cannot reliably know who the authority is if it is
another client

 Permanent authority

 Once authority client is chosen, it does not
change

 If authority client disconnects, object is deleted

 Commonly used for player-owned objects
(deployable turrets, stat objects)

 Authority groups
 Each object is part of a group and has a group id
 A group can have multiple objects in it
 Server assigns the authority of a group to a client,

that client becomes authority of all objects in that
group

 Object whose authority is independent of other
objects will be in its own group

 Authority groups are useful when two or more objects
should be updated by the same client
▪ All bots are usually in same authority group because of the

job system and nav reservations

 Motivation
 Challenges

 Solution
 Architecture
 Objects

 Authority
 Synchronizing Changes
 Updates

 Events and Responses

 Client API

 Usually used for things that need periodic updates
 Position changes for a moby, state changes for a bot

 Server will take update and forward it to clients
 Sent only by the authority, client-side logic usually

comprises
 Check if we’re the authority

 If so, run some logic to determine changes that need to be
made (e.g. move position 1 meter)

 Send changes to server
 If a non-authority sends an update, the server will

discard it

 Example: Burning Car

 Car has object id = 1

 Starts with 100 health

 Health is reduced by 10 points per second

Server

Object 1

Authority = 1

Health = 100

Client 1 (authority)

Object 1

Health = 100

Client 2

Object 1

Health = 100

Server

Object 1

Authority = 1

Health = 100

Client 1 (authority)

Object 1

Health = 90

Client 2

Object 1

Health = 100

Update:

Change Health

to 90

Server

Object 1

Authority = 1

Health = 90

Client 1 (authority)

Object 1

Health = 90

Client 2

Object 1

Health = 100

Update:

Change Health

to 90

Server

Object 1

Authority = 1

Health = 90

Client 1 (authority)

Object 1

Health = 90

Client 2

Object 1

Health = 90

 Problem: what happens if the client sending
the change loses authority

 Server will reject health change to 90 since they
are no longer the authority

 But locally, the client has already changed health
to 90, leaving them in an inconsistent state with
other clients

 Solution: only send change requests to the
server without modifying any local state

 Authority sees the car has 100 health, knows that
it should be 90 and sends change to server

 Server gets message, changes health to 90,
forwards change back to all clients, including
authority

 If authority changes, server will reject change but
all clients remain consistent

Server

Object 1

Authority = 1

Health = 100

Client 1 (authority)

Object 1

Health = 100

Client 2

Object 1

Health = 100

Server

Object 1

Authority = 1

Health = 100

Client 1 (authority)

Object 1

Health = 100

Client 2

Object 1

Health = 100

Update:

Change Health

to 90

Server

Object 1

Authority = 1

Health = 90

Client 1 (authority)

Object 1

Health = 100

Client 2

Object 1

Health = 100

Update:

Change Health

to 90

Server

Object 1

Authority = 1

Health = 90

Client 1 (authority)

Object 1

Health = 90

Client 2

Object 1

Health = 90

 Problem: multiple updates are not queued
properly
 Authority sees car has 100 health, deducts 10 points,

sends request to server to change it to 90

 1 second later, server has not responded with change
yet, so the authority still sees 100 health

 Server finally sees first update, changes health to 90
and forwards it to clients

 Server then sees second update, changes health to 90
and forwards it to clients

 Health gets set to 90 instead of 80

 Solution: maintain second copy of each field
on the client, known as the server copy

 Server copy of a field contains the change that
was last sent to the server

 When a non-authority client receives an update,
their server copy is overwritten with the change as
well

 Regular game logic still relies on regular copy

Server

Object 1

Authority = 1

Health = 100

Client 1 (authority)

Object 1

Health = 100

Server Copy Health = 100

Client 2

Object 1

Health = 100

Server Copy Health = 100

Server

Object 1

Authority = 1

Health = 100

Client 1 (authority)

Object 1

Health = 100

Server Copy Health = 90

Client 2

Object 1

Health = 100

Server Copy Health = 100

Update:

Change Health

to 90

Server

Object 1

Authority = 1

Health = 100

Client 1 (authority)

Object 1

Health = 100

Server Copy Health = 80

Client 2

Object 1

Health = 100

Server Copy Health = 100

Update:

Change Health

to 80

Server

Object 1

Authority = 1

Health = 90

Client 1 (authority)

Object 1

Health = 100

Server Copy Health = 80

Client 2

Object 1

Health = 100

Server Copy Health = 100

Update:

Change Health

to 90

Server

Object 1

Authority = 1

Health = 90

Client 1 (authority)

Object 1

Health = 90

Server Copy Health = 80

Client 2

Object 1

Health = 90

Server Copy Health = 90

Server

Object 1

Authority = 1

Health = 80

Client 1 (authority)

Object 1

Health = 90

Server Copy Health = 80

Client 2

Object 1

Health = 90

Server Copy Health = 90

Update:

Change Health

to 80

Server

Object 1

Authority = 1

Health = 80

Client 1 (authority)

Object 1

Health = 80

Server Copy Health = 80

Client 2

Object 1

Health = 80

Server Copy Health = 80

 Motivation
 Challenges

 Solution
 Architecture
 Objects

 Authority
 Synchronizing Changes
 Updates

 Events and Responses

 Client API

 A client can send an event on an object to
request a change to it

 Any player can damage a bot – damage messages
are events

 Any player can pick up a weapon – pickup
requests are events

 Events routed though server

 Client 1 sends event to server on object

 Server determines authority of object

 Server forwards event to authority

 Authority handles event and sends a response
that contains state changes on the object

 Responses are similar to updates

 Multiple event types are supported per object
 Each event is defined with an event id

 An object can have a damage event that
represents a request from a client to reduce
health

 Same object can have a repair event that is a
request to increase health

 Damage and repair events would have different
ids

Server

Object 1

Authority = Client 2

Health = 100

Client 1

Object 1

Health = 100

Server Copy Health = 100

Client 2 (authority)

Object 1

Health = 100

Server Copy Health = 100

Server

Object 1

Authority = Client 2

Health = 100

Client 1

Object 1

Health = 100

Server Copy Health = 100

Client 2 (authority)

Object 1

Health = 100

Server Copy Health = 100

Event:

Damage Object 1

for 10 points

Server

Object 1

Authority = Client 2

Health = 100

Client 1

Object 1

Health = 100

Server Copy Health = 100

Client 2 (authority)

Object 1

Health = 100

Server Copy Health = 100

Event:

Damage Object 1

for 10 points

Server

Object 1

Authority = Client 2

Health = 100

Client 1

Object 1

Health = 100

Server Copy Health = 100

Client 2 (authority)

Object 1

Health = 100

Server Copy Health = 90

Response:

Change Health to

90 on Object 1

Server

Object 1

Authority = Client 2

Health = 90

Client 1

Object 1

Health = 100

Server Copy Health = 100

Client 2 (authority)

Object 1

Health = 100

Server Copy Health = 90

Response:

Change Health to

90 on Object 1

Server

Object 1

Authority = Client 2

Health = 90

Client 1

Object 1

Health = 90

Server Copy Health = 90

Client 2 (authority)

Object 1

Health = 90

Server Copy Health = 90

 An event is effectively a message that gets
the authority of an object to send an update

 Motivation
 Challenges

 Solution
 Architecture
 Objects

 Authority
 Synchronizing Changes
 Updates

 Events and Responses

 Client API

 Sync data classes

 Static object that defines a set of fields and
message handlers

 All instances of the same update class share the
same sync data class

 Sync managers
 A sync manager is allocated for each object on the

client that needs to be synced

 Majority of sync host API operates through a sync
manager

 Contains instance-specific data
▪ Pointer to object being synced

▪ Pointer to sync data class

▪ Object id

▪ Group id

 Example: DamageableCar update class

 Can take damage, which reduces its health

 Health also reduces by 10 points per second

 Has a single synced field, m_health, with field id 0

 Has a single event type, damage, with event id 0

 Sample synced update class

//

// DamageableCar – update class for exploding car that can be damaged

//

// Simple damage event sent for cars

struct DamageEvent : public Sync::SyncEvent

{

f32 m_damage_amount;

};

class DamageableCar : public GameMobyUpdate

{

public:

// Synced field ids

enum

{

FIELD_HEALTH = 0

};

// Event ids

enum

{

EVENT_DAMAGE = 0

};

 Sample synced update class (continued)
virtual void Init();

virtual void Update();

virtual void Delete();

virtual void ProcessDamage(DMG::DamageResult* p_dmg_result);

// Update handler

static HandleSyncUpdate(Sync::SyncUpdate* p_update, DamageableCar * p_car);

// Damage event/response handlers

static void HandleDamageEvent(DamageEvent* p_event, DamageableCar * p_car);

static void HandleDamageResponse(Sync::SyncResponse* p_response, DamageableCar * p_car);

protected:

// Handle to sync manager

Sync::ManagerHandle m_sync_manager_handle;

// Synced health field

f32 m_health;

// Timer to do damage-over-time

f32 m_dot_timer;

};

 Sync data class

//

// DamageableCar sync data class – defines what fields on are synced on the

// update class and what message handlers it uses

//

// Starts sync class declaration – sync class is referenced by the name

// passed into the macro

DECLARE_SYNC_CLASS(DamageableCarSyncClass)

// Field registration – needs name of class fields are on

BEGIN_FIELDS(DamageableCar)

// Register fields – requires a field id and member name

REGISTER_FIELD(DamageableCar::FIELD_HEALTH, m_health);

END_FIELDS

// Register update handler – requires message handler

REGISTER_STATIC_UPDATE_HANDLER(DamageableCar::HandleSyncUpdate)

// Register event and response handlers – requires an event id and message handler

REGISTER_STATIC_EVENT_HANDLER(DamageableCar::EVENT_DAMAGE,

DamageableCar::HandleDamageEvent);

REGISTER_STATIC_RESPONSE_HANDLER(DamageableCar::EVENT_DAMAGE,

DamageableCar::HandleDamageResponse);

END_SYNC_CLASS(DamageableCarSyncClass)

 Sync manager allocation/de-allocation
void DamageableCar::Init()

{

GameMobyUpdate::Init();

m_health = 100.0f;

// Allocate sync manager – requires a pointer to a sync data class

// which can be referenced with the GET_SYNC_CLASS macro

Sync::SyncManager* p_manager = Sync::CreateManager(

GET_SYNC_CLASS(DamageableCarSyncClass));

// Pass pointer to our self to sync manager so it can reference synced

// fields

p_manager->Init(this);

// Use server-copy of data when syncing fields

p_manager->AllocServerCopy();

// Store handle

m_sync_manager_handle = p_manager->GetHandle();

}

void DamageableCar::Delete()

{

// De-allocate sync manager

Sync::FreeManager(m_sync_manager_handle);

GameMobyUdpate::Delete();

}

 Update example
void DamageableCar::Update()
{
GameMobyUpdate::Update();

// Get sync manager
Sync::SyncManager* p_manager = Sync::GetSyncManager(m_sync_manager_handle);

// Check if we’re the authority of the object
if(p_manager && p_manager->IsAuthority())
{
// Only the authority runs the below code

// Reduce health 10 points per second
if(TIME::DecTimer(&m_dot_timer))
{
// Determine the amount of health we last updated the server with
f32 server_copy_health;
p_manager->GetServerField(DamageableCar::FIELD_HEALTH, &server_copy_health);

// Still have health, send update
if(server_copy_health > 0.0f)
{

Sync::SyncUpdate sync_update;

// Update server copy of health
server_copy_health = Maxf(server_copy_health – 10.0f, 0.0f);
p_manager->SetServerField(DamageableCar::FIELD_HEALTH, &server_copy_health);

// Mark health as a field to sync
sync_update.SendField(DamageableCar::FIELD_HEALTH);

// Send update
p_manager->Update(&sync_update);

}

// Reset dot timer
m_dot_timer = 1.0f;

}
}

}

//

// This function gets called on all clients after the authority sends an

// update

//

void DamageableCar::HandleSyncUpdate(Sync::SyncUpdate* p_update, DamageableCar * p_car)

{

// Trigger some effects if we’ve taken too much damage

if(p_update->FieldIsModified(DamageableCar::FIELD_HEALTH))

{

if(p_car->m_health <= 50.0f && !p_car->HasTrackedEffects(EventType::SMOKING))

{

p_car->TriggerTrackedEffectEvent(EventType::SMOKING);

}

}

}

 Event-response example

//

// This function gets called when any local client damages the car – sends off

// an event to the authority with the amount of damage we want to do

//

void DamageableCar::ProcessDamage(DMG::DamageResult* p_dmg_result)

{

// Get sync manager

Sync::SyncManager* p_manager = Sync::GetSyncManager(m_sync_manager_handle);

if(p_manager)

{

// Build sync event to pass damage amount

DamageEvent dmg_event;

dmg_event.m_damage_amount = p_dmg_result->m_damage.m_amount;

// Send event – the first argument is the event id, which will determine

// which event handler gets called with this event on the authority

// client

p_manager->Event(DamageableCar::EVENT_DAMAGE, &dmg_event);

}

}

//

// This function gets called on the authority client when any client sends

// a damage event on this damageable car

//

void DamageableCar::HandleDamageEvent(DamageEvent* p_damage_event, DamageableCar* p_car)

{

// Get sync manager

Sync::SyncManager* p_manager = Sync::GetSyncManager(p_barrel->m_sync_manager_handle);

if(p_manager)

{

// Build sync response

Sync::SyncResponse sync_response;

// Get current health

f32 server_copy_health;

p_manager->GetServerField(DamageableCar::FIELD_HEALTH, & server_copy_health);

// Check if we’re still alive

if(server_copy_health > 0.0f)

{

// Update server copy of health

server_copy_health = Maxf(server_copy_health – p_damage_event->m_damage_amount, 0.0f);

p_manager->SetServerField(DamageableCar::FIELD_HEALTH, &server_copy_health);

// Mark health as a field to sync

sync_update.SendField(DamageableCar::FIELD_HEALTH);

}

// Send response – uses same event id we used when sending original event

// always gets sent so server can resolve events

p_manager->Response(DamageableCar::EVENT_DAMAGE, &sync_response);

}

}

//

// This function gets called on all clients after the authority has handled

// a damage event and decremented the health of the car

//

void DamageableCar::HandleDamageResponse(Sync::SyncResponse* p_response, DamageableCar * p_car)

{

// Trigger some effects if we’ve taken too much damage

if(p_response->FieldIsModified(DamageableCar::FIELD_HEALTH))

{

if(p_car->m_health <= 50.0f && !p_car->HasTrackedEffects(EventType::SMOKING))

{

p_car->TriggerTrackedEffectEvent(EventType::SMOKING);

}

// Trigger a damaged event

p_car->TriggerEffectEvent(EventType::DAMAGED);

}

}

