24 February 2010
Peter Kao
Insomniac Games

Introduction to Sync Host

Outline

Motivation
Challenges

Solution
Architecture

Objects

Authority
Synchronizing Changes

Updates

Events and Responses

Client API

Outline

Motivation

Solution
Architecture

Objects

Authority
Synchronizing Changes

Updates

Events and Responses

Client API

Challenges

Singular authority

Authority refers to client that is in charge of state
changes on an object

If multiple clients try to change state on the same
object, they will eventually be in inconsistent states

Two players try to take a dropped weapon, at the same
time and both end up getting it

Multiple clients can request changes to state, but
only one client can actually make those changes

Multiple players can damage a car, but only one player
will change its health

Challenges (continued)

Choosing an Authority

How to get clients to agree on who is to be authority
of an object

Detect that we need to choose a new authority
because
Authority not yet chosen
Current authority is unresponsive (lag, unclean disconnect)
Current authority has disconnected

Having clients negotiate amongst themselves is time-
consuming and often unreliable

Challenges (continued)

Late-Join

Client is joining a game in-progress and needs to
have their state brought up-to-date

Who sends updates incoming client; basically,
who has the authoritative game state
Choosing one client has problems

Bandwidth strain on chosen client

What if the chosen client lags out?

Outline

Motivation
Challenges

Architecture
Objects
Authority
Synchronizing Changes
Updates
Events and Responses
Client API

Solution

Server to Make Decisions

Client always has connection to server —if client
looses server connection, then the client gets
kicked out of the gam

Chooses the authority of objects

Has the authoritative (most up-to-date) game
state

Late-joining clients can ask server for game state update

Solution (continued)

Differences from a Traditional Server
Does not run game-specific logic
Maintains a list of clients to pick authority from
Database of objects, but does not know what those
objects are

Each object is just a collection of data

Changes to an object’s data are routed through the server
first so it has authoritative game state

Data changes are then forwarded to clients — up to the client
to make sense of data changes

Data changes are done through messages

Outline

Motivation
Challenges

Solution
Architecture

Authority
Synchronizing Changes

Updates

Events and Responses

Client API

Objects

Client vs. Server Representation

Client has familiar view of object (e.g. an update
class)

Subset of object data is synced — these are called
synced fields
Each field of an object has its own id

Not all fields need to be synced — only things that when
changed, other clients need to know about (position,
health)

Server only knows about synced fields

Objects (continued)

Client vs. Server Representation

Client

Object 1

// Registered as synced field O
£f32 m health = 100.0f;

// Non-synced field
£f32 m scale = 1.0f;

// Registered as synced field 1
ul6 m state = 1;

Server
Object 1
Field 0: 0x42C80000
Field 1: 0x0001

Objects (continued)

Each object is referenced by a unique object id that is
known to the server and each client
For example, the same pickup pad on a level will have the
same object id on each client
Assigning object ids
For static objects, they can be assigned ahead of time —all
pick up pads are loaded in the same order on all clients.
Pickup pad 1 getsid 1, pad 2 gets id 2, etc.
For dynamic objects like spawned mobys, server has

object creation functionality
Can ask server to assign an id for an object within a given range

Objects (continued)

Changing object data

Client Server
Object 1 Object 1
// Registered as synced field O Field 0: 0x42C80000
£f32 m health = 100.0f; Field 1: 0x0001
// Non-synced field

£f32 m scale = 1.0f;

// Registered as synced field 1
ul6 m state = 1;

Change Health Change Object 1, Field 0 to
to 100 0x42C8000

Outline

Motivation
Challenges

Solution
Architecture

Objects

Synchronizing Changes

Updates
Events and Responses
Client API

Authority

Refers to the client that the server has chosen
to make state changes about an object

Two types of authority, default and
permanent

Authority (continued)

Default authority

Authority can migrate from one client to another

When migration occurs
Object does not have an authority yet
Current authority is unresponsive or has disconnected

A client knows whether or not it's the authority of
an object

Cannot reliably know who the authority is if it is
another client

Authority (continued)

Permanent authority

Once authority client is chosen, it does not
change

If authority client disconnects, object is deleted

Commonly used for player-owned objects
(deployable turrets, stat objects)

Authority (continued)

Authority groups
Each object is part of a group and has a group id
A group can have multiple objectsin it

Server assigns the authority of a group to a client,
that client becomes authority of all objects in that

group
Object whose authority is independent of other
objects will be in its own group

Authority groups are useful when two or more objects
should be updated by the same client

All bots are usually in same authority group because of the
job system and nav reservations

Outline

Motivation
Challenges

Solution
Architecture

Objects

Authority
Synchronizing Changes

Events and Responses
Client API

Updates

Usually used for things that need periodic updates
Position changes for a moby, state changes for a bot

Server will take update and forward it to clients
Sent only by the authority, client-side logic usually
comprises

Check if we're the authority

If so, run some logic to determine changes that need to be
made (e.g. move position 1 meter)
Send changes to server
If a non-authority sends an update, the server will
discard it

Updates (continued)

Example: Burning Car
Car has objectid =1
Starts with 100 health
Health is reduced by 10 points per second

Updates (continued)

Server

Object 1

Authority =
Health = 100

1

Client 1 (authority)

Object 1

Health = 100

Client 2

Object 1

Health = 100

Updates (continued)

Update:
Change Health
to 90

Server

Object 1

Authority =
Health = 100

1

Client 1 (authority)

Object 1

Health = 90

Client 2

Object 1

Health = 100

Updates (continued)

Server

Object 1

Authority =1
Health = 90

Update:
Change Health
to 90
Client 1 (authority) Client 2
Object 1 Object 1

Health = 90 Health = 100

Updates (continued)

Server

Object 1

Authority =
Health = 90

1

Client 1 (authority)

Object 1

Health = 90

Client 2

Object 1

Health = 90

Updates (continued)

Problem: what happens if the client sending
the change loses authority

Server will reject health change to 9o since they
are no longer the authority

But locally, the client has already changed health
to 90, leaving them in an inconsistent state with
other clients

Updates (continued)

Solution: only send change requests to the
server without modifying any local state

Authority sees the car has 100 health, knows that
it should be 9o and sends change to server

Server gets message, changes health to 9o,
forwards change back to all clients, including
authority

If authority changes, server will reject change but
all clients remain consistent

Updates (continued)

Server

Object 1

Authority =
Health = 100

1

Client 1 (authority)

Object 1

Health = 100

Client 2

Object 1

Health = 100

Updates (continued)

Update:
Change Health
to 90

Server

Object 1

Authority =
Health = 100

1

Client 1 (authority)

Object 1

Health = 100

Client 2

Object 1

Health = 100

Updates (continued)

Server

Object 1

Authority =1
Health = 90

Update:
Change Health
to 90
Client 1 (authority) Client 2
Object 1 Object 1

Health = 100 Health = 100

Updates (continued)

Server

Object 1

Authority =
Health = 90

1

Client 1 (authority)

Object 1

Health = 90

Client 2

Object 1

Health = 90

Updates (continued)

Problem: multiple updates are not queued
properly
Authority sees car has 100 health, deducts 10 points,
sends request to server to change it to 9o

1 second later, server has not responded with change
yet, so the authority still sees 100 health

Server finally sees first update, changes health to g0
and forwards it to clients

Server then sees second update, changes health to 9o
and forwards it to clients

Health gets set to 9o instead of 8o

Updates (continued)

Solution: maintain second copy of each field
on the client, known as the server copy

Server copy of a field contains the change that
was last sent to the server

When a non-authority client receives an update,
their server copy is overwritten with the change as
well

Regular game logic still relies on regular copy

Updates (continued)

Server

Object 1

Authority =1
Health = 100

Client 1 (authority)

Object 1

Health = 100
Server Copy Health

100

Client 2

Object 1

Health = 100
Server Copy Health

Updates (continued

Update:
Change Health
to 90

Server

Object 1

Authority =1
Health = 100

Client 1 (authority)

Object 1

Health = 100
Server Copy Health

90

Client 2

Object 1

Health = 100
Server Copy Health

Updates (continued

Update:
Change Health
to 80

Server

Object 1

Authority =1
Health = 100

Client 1 (authority)

Object 1

Health = 100
Server Copy Health

80

Client 2

Object 1

Health = 100
Server Copy Health

Updates (continued)

Server

Object 1

Authority =1
Health = 90

Update:

Change Health
to 90

Client 1 (authority)

Object 1

Health = 100
Server Copy Health

80

Client 2

Object 1

Health = 100
Server Copy Health

Updates (continued)

Server

Object 1

Authority =1
Health = 90

Client 1 (authority) Client 2
Object 1 Object 1
Health = 90 Health = 90
Server Copy Health = 80 Server Copy Health = 90

Updates (continued)

Server

Object 1

Authority =1
Health = 80

Update:

Change Health
to 80

Client 1 (authority)

Object 1

Health = 90
Server Copy Health

80

Client 2

Object 1

Health = 90

Server Copy Health

Updates (continued)

Server

Object 1

Authority =1
Health = 80

Client 1 (authority) Client 2
Object 1 Object 1
Health = 80 Health = 80
Server Copy Health = 80 Server Copy Health = 80

Outline

Motivation
Challenges

Solution
Architecture

Objects

Authority
Synchronizing Changes

Updates

Client API

Events and Responses

A client can send an event on an object to
request a change to it

Any player can damage a bot — damage messages
are events

Any player can pick up a weapon — pickup
requests are events

Events and Responses (con't)

Events routed though server
Client 1 sends event to server on object
Server determines authority of object
Server forwards event to authority

Authority handles event and sends a response
that contains state changes on the object

Responses are similar to updates

Events and Responses (con't)

Multiple event types are supported per object
Each eventis defined with an event id

An object can have a damage event that

represents a request from a client to reduce
health

Same object can have arepair event that is a
request to increase health

Damage and repair events would have different
ids

Events and Responses (con't)

Server

Object 1

Authority = Client 2
Health = 100

Client 1 Client 2 (authority)
Object 1 Object 1
Health = 100 Health = 100
Server Copy Health = 100 Server Copy Health = 100

Events and Responses (con't)

Server

Object 1

Authority = Client 2
Health = 100

Event:
Damage Object 1
for 10 points

Client 1

Object 1

Health = 100

Server Copy Health 100

Client 2 (authority)

Object 1

Health = 100
Server Copy Health

Events and Responses (con't)

Server

Object 1

Authority = Client 2
Health = 100

Event:
Damage Object 1
for 10 points

Client 1

Object 1

Health = 100

Server Copy Health 100

Client 2 (authority)

Object 1

Health = 100
Server Copy Health =

Events and Responses (con't)

Server

Object 1

Authority = Client 2
Health = 100

Response:
Change Health to
90 on Object 1

Client 1 Client 2 (authority)
Object 1 Object 1
Health = 100 Health = 100
Server Copy Health = 100 Server Copy Health = 90

Events and Responses (con't)

Server

Object 1

Authority = Client 2
Health = 90

Response:
Change Health to
90 on Object 1

Client 1 Client 2 (authority)
Object 1 Object 1
Health = 100 Health = 100
Server Copy Health = 100 Server Copy Health = 90

Events and Responses (con't)

Server

Object 1

Authority = Client 2
Health = 90

Client 1 Client 2 (authority)
Object 1 Object 1
Health = 90 Health = 90
Server Copy Health = 90 Server Copy Health = 90

Events and Responses (con't)

An event is effectively a message that gets
the authority of an object to send an update

Outline

Motivation
Challenges

Solution
Architecture

Objects

Authority
Synchronizing Changes

Updates
Events and Responses

Client API

Sync data classes

Static object that defines a set of fields and
message handlers

All instances of the same update class share the
same sync data class

Client API (continued)

Sync managers

A sync manager is allocated for each object on the
client that needs to be synced

Majority of sync host APl operates through a sync
manager

Contains instance-specific data
Pointer to object being synced
Pointer to sync data class
Objectid
Group id

Client API (continued)

Example: DamageableCar update class
Can take damage, which reduces its health
Health also reduces by 10 points per second
Has a single synced field, m_health, with field id 0

Has a single event type, damage, with eventid O

Client API (continued)

Sample synced update class

[117177717777177
// DamageableCar - update class for exploding car that can be damaged

L1170 777077077707777777077777770777777777707777777777777771771717171777777777177

// Simple damage event sent for cars
struct DamageEvent : public Sync::SyncEvent
{

£32 m_damage_ amount;

}i

class DamageableCar : public GameMobyUpdate
{
public:

// Synced field ids

enum

{

FIELD HEALTH
}i

[
[=)

// Event ids
enum

{

I
[=]

EVENT DAMAGE
};

Client API (continued)

Sample synced update class (continued)

virtual void Init();

virtual void Update() ;

virtual void Delete() ;

virtual void ProcessDamage (DMG: :DamageResult* p dmg result);

// Update handler
static HandleSyncUpdate(Sync::SyncUpdate* p update, DamageableCar * p car);

// Damage event/response handlers
static void HandleDamageEvent (DamageEvent* p event, DamageableCar * p car);
static void HandleDamageResponse (Sync::SyncResponse* p response, DamageableCar * p car);

protected:
// Handle to sync manager
Sync: :ManagerHandle m_sync_manager_ handle;

// Synced health field
£32 m_health;

// Timer to do damage-over-time
£32 m_dot_timer;
}i

Sync data class

LI11177717777777777
// DamageableCar sync data class - defines what fields on are synced on the
// update class and what message handlers it uses

LIIT70777077077707770777107777777077707777770777777777777777717771717171771777777177

// Starts sync class declaration - sync class is referenced by the name
// passed into the macro
DECLARE SYNC_CLASS (DamageableCarSyncClass)

// Field registration - needs name of class fields are on
BEGIN_FIELDS (DamageableCar)
// Register fields - requires a field id and member name
REGISTER FIELD (DamageableCar::FIELD HEALTH, m_health);
END_FIELDS

// Register update handler - requires message handler
REGISTER _STATIC_ UPDATE HANDLER(DamageableCar::HandleSyncUpdate)

// Register event and response handlers - requires an event id and message handler

REGISTER _STATIC_EVENT HANDLER(DamageableCar::EVENT DAMAGE,
DamageableCar: : HandleDamageEvent) ;

REGISTER STATIC_RESPONSE_HANDLER (DamageableCar: : EVENT_DAMAGE,
DamageableCar: : HandleDamageResponse) ;

END_ SYNC_CLASS(DamageableCarSyncClass)

Client API (continued)

Sync manager allocation/de-allocation

void DamageableCar::Init()
{
GameMobyUpdate: :Init() ;
m_health = 100.0f;

// Allocate sync manager — requires a pointer to a sync data class

// which can be referenced with the GET_SYNC_CLASS macro

Sync: :SyncManager* p manager = Sync::CreateManager (
GET_SYNC_CLASS (DamageableCarSyncClass));

// Pass pointer to our self to sync manager so it can reference synced
// fields
p_manager->Init(this);

// Use server-copy of data when syncing fields
p_manager->AllocServerCopy () ;

// Store handle
m_sync_manager_handle = p manager->GetHandle() ;

void DamageableCar: :Delete ()

{
// De-allocate sync manager
Sync: :FreeManager (m_sync_manager_handle);

GameMobyUdpate: :Delete() ;
}

Client API (continued)

Update example

void DamageableCar: :Update ()
{
GameMobyUpdate: :Update () ;

// Get sync manager
Sync: :SyncManager* p manager = Sync::GetSyncManager(m_sync_manager_ handle);

// Check if we’re the authority of the object
if (p_manager && p_manager->IsAuthority())

// Only the authority runs the below code

// Reduce health 10 points per second
if (TIME: :DecTimer(&m_dot timer))
{
// Determine the amount of health we last updated the server with
£32 server copy health;
p_manager->GetServerField(DamageableCar::FIELD HEALTH, &server_ copy health);

// Still have health, send update
if (server copy health > 0.0f)

{
Sync: :SyncUpdate sync_update;

// Update server copy of health
server copy health = Maxf(server copy health - 10.0f, 0.0f);
p_manager->SetServerField(DamageableCar::FIELD HEALTH, &server_ copy health);

// Mark health as a field to sync
sync_update.SendField(DamageableCar::FIELD_ HEALTH) ;

// Send update
p_manager->Update(&sync_update);
}

// Reset dot timer
m_dot_ timer = 1.0f;
}
}
}

Client API (continued)

[117177717777177
// This function gets called on all clients after the authority sends an
// update
[117177717777177
void DamageableCar: :HandleSyncUpdate(Sync::SyncUpdate* p update, DamageableCar * p car)
{
// Trigger some effects if we’ve taken too much damage
if (p_update->FieldIsModified(DamageableCar::FIELD HEALTH))
{
if (p_car->m health <= 50.0f && !p car->HasTrackedEffects(EventType: :SMOKING))
{
p_car->TriggerTrackedEffectEvent (EventType: : SMOKING) ;
}
}
}

Client API (continued)

Event-response example

[11171177777777777777771777777777777771777777777777777717771777777771717171711777
// This function gets called when any local client damages the car - sends off
// an event to the authority with the amount of damage we want to do
[1111177777777777777777777777777777771777777777777777717771777777771717771711777
void DamageableCar: :ProcessDamage (DMG: :DamageResult* p dmg result)
{
// Get sync manager
Sync: :SyncManager* p manager = Sync::GetSyncManager(m_sync_manager_ handle);
if (p_manager)
{
// Build sync event to pass damage amount
DamageEvent dmg event;
dmg event.m damage_amount = p dmg result->m damage.m amount;

// Send event - the first argument is the event id, which will determine
// which event handler gets called with this event on the authority

// client

p_manager->Event (DamageableCar: :EVENT DAMAGE, &dmg event);

Client API (continued)

[117177717777177
// This function gets called on the authority client when any client sends
// a damage event on this damageable car
[117177717777177
void DamageableCar::HandleDamageEvent (DamageEvent* p damage event, DamageableCar* p car)
{
// Get sync manager
Sync: :SyncManager* p manager = Sync::GetSyncManager(p_barrel->m sync manager_ handle);
if (p_manager)
{
// Build sync response
Sync: :SyncResponse sync_response;

// Get current health
£32 server copy health;
p_manager->GetServerField(DamageableCar::FIELD HEALTH, & server_copy health);

// Check if we’re still alive

if (server_copy health > 0.0f)

{
// Update server copy of health
server_ copy_health = Maxf(server copy health - p damage event->m_damage amount, 0.0f);
p_manager->SetServerField(DamageableCar::FIELD HEALTH, &server_ copy health);

// Mark health as a field to sync
sync_update.SendField(DamageableCar::FIELD HEALTH) ;
}

// Send response — uses same event id we used when sending original event
// always gets sent so server can resolve events
p_manager->Response (DamageableCar: :EVENT DAMAGE, &sync_response) ;

Client API (continued)

L1117710777777771777171717177777777777777
// This function gets called on all clients after the authority has handled

// a damage event and decremented the health of the car
L11177107777777717771717171717777777777777

void DamageableCar::HandleDamageResponse(Sync::SyncResponse* p response, DamageableCar * p car)

{
// Trigger some effects if we’ve taken too much damage
if (p_response->FieldIsModified(DamageableCar::FIELD HEALTH))
{
if (p_car->m health <= 50.0f && !p car->HasTrackedEffects(EventType: :SMOKING))
{

p_car->TriggerTrackedEffectEvent (EventType: : SMOKING) ;
}

// Trigger a damaged event

p_car->TriggerEffectEvent (EventType: :DAMAGED) ;
}
}

